Four-vertex model and random tilings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The six-vertex model on random lattices

In this letter, the 6-vertex model on dynamical random lattices is defined via a matrix model and rewritten (following I. Kostov) as a deformation of the O(2) model. In the large N planar limit, an exact solution is found at criticality. The critical exponents of the model are determined; they vary continously along the critical line. The vicinity of the latter is explored, which confirms that ...

متن کامل

Molecular random tilings as glasses.

We have recently shown that p-terphenyl-3,5,3',5'-tetracarboxylic acid adsorbed on graphite self-assembles into a two-dimensional rhombus random tiling. This tiling is close to ideal, displaying long-range correlations punctuated by sparse localized tiling defects. In this article we explore the analogy between dynamic arrest in this type of random tilings and that of structural glasses. We sho...

متن کامل

Tilings and model theory

In this paper we emphasize the links between model theory and tilings. More precisely, after giving the definitions of what tilings are, we give a natural way to have an interpretation of the tiling rules in first order logics. This opens the way to map some model theoretical properties onto some properties of sets of tilings, or tilings themselves.

متن کامل

Domino tilings and the six-vertex model at its free fermion point

At the free-fermion point, the six-vertex model with domain wall boundary conditions (DWBC) can be related to the Aztec diamond, a domino tiling problem. We study the mapping on the level of complete statistics for general domains and boundary conditions. This is obtained by associating to both models a set of non-intersecting lines in the Lindström-Gessel-Viennot (LGV) scheme. One of the conse...

متن کامل

0 Non - Intersecting Paths , Random Tilings and Random Matrices

We investigate certain measures induced by families of non-intersecting paths in domino tilings of the Aztec diamond, rhombus tilings of an abc-hexagon, a dimer model on a cylindrical brick lattice and a growth model. The measures obtained, e.g. the Krawtchouk and Hahn ensembles, have the same structure as the eigenvalue measures in random matrix theory like GUE, which can in fact can be obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Mathematical Physics

سال: 2008

ISSN: 0040-5779,1573-9333

DOI: 10.1007/s11232-008-0043-6